Math 347H: Fundamental Math (H) HOMEWORK 8 Due date: Nov 16 (Thu)

- **1.** (a) Prove that the set $P[\mathbb{Q}]$ of polynomials over \mathbb{Q} is countable.
 - (b) Prove that the set of all algebraic reals is countable. You may use without proof that each polynomial has only finitely-many roots.
- 2. Prove in detail:
 - (a) $\mathscr{P}(\mathbb{N}) \cong 2^{\mathbb{N}}$.
 - (b) $\mathbb{N}^{\mathbb{N}} \hookrightarrow 2^{\mathbb{N}}$.
 - $(c) \quad \mathbb{Q}^{\mathbb{N}}\cong \mathbb{N}^{\mathbb{N}}.$
- **3.** Prove the following using any polynomial, rational, trigonometric, or other functions you like.
 - (a) $(0,1) \cong (1,+\infty)$.
 - (b) $(0,1) \cong (a,b)$ for any reals a < b.
 - (c) $(0,1) \cong \mathbb{R}$.
 - (d) $(0,1) \cong [0,1].$
- **4.** For sets $U \subseteq Y \times X$ and $y \in Y$, let $U_y := \{x \in X : (y, x) \in U\}$ and call it the *fiber of* U *over* y. When Y = X, we define the set AntiDiag $(U) := \{x \in X : x \notin U_x\}$ and call it the *antidiagonal of* U.

Cantor's Antidiagonaliation. For any set $U \subseteq X \times X$ its antidiagonal is not one of its fibers, i.e. AntiDiag $(U) \neq U_x$ for every $x \in X$.

- **5.** For any (possibly uncountable) set X and any function $f : X \to \mathscr{P}(X)$, define a set $U \subseteq X \times X$ (think of it as a table indexed by X) such that AntiDiag(U) is not in the image of f. Deduce Cantor's theorem that $X \not\twoheadrightarrow \mathscr{P}(X)$.
- **6.** Perform the following base conversions of numbers and replace the question marks with your answers. Include your calculations.
 - (a) $536_7 = ?_{10}$.
 - (b) $100000_2 = ?_8$.
 - (c) $20_{10} = ?_{16}$.
- 7. Describe the algorithm/procedure of writing a rational $\left[\frac{a}{b}\right]$ in its decimal representation. Prove that the latter is well-defined.