Math 347H: Fundamental Math (H) Homework 8 Due date: Nov 16 (Thu)

1. (a) Prove that the set $P[\mathbb{Q}]$ of polynomials over \mathbb{Q} is countable.
(b) Prove that the set of all algebraic reals is countable. You may use without proof that each polynomial has only finitely-many roots.
2. Prove in detail:
(a) $\mathscr{P}(\mathbb{N}) \cong 2^{\mathbb{N}}$.
(b) $\mathbb{N}^{\mathbb{N}} \hookrightarrow 2^{\mathbb{N}}$.
(c) $\mathbb{Q}^{\mathbb{N}} \cong \mathbb{N}^{\mathbb{N}}$.
3. Prove the following using any polynomial, rational, trigonometric, or other functions you like.
(a) $(0,1) \cong(1,+\infty)$.
(b) $(0,1) \cong(a, b)$ for any reals $a<b$.
(c) $(0,1) \cong \mathbb{R}$.
(d) $(0,1) \cong[0,1]$.
4. For sets $U \subseteq Y \times X$ and $y \in Y$, let $U_{y}:=\{x \in X:(y, x) \in U\}$ and call it the fiber of U over y. When $Y=X$, we define the set $\operatorname{AntiDiag}(U):=\left\{x \in X: x \notin U_{x}\right\}$ and call it the antidiagonal of U.
Cantor's Antidiagonaliation. For any set $U \subseteq X \times X$ its antidiagonal is not one of its fibers, i.e. AntiDiag $(U) \neq U_{x}$ for every $x \in X$.
5. For any (possibly uncountable) set X and any function $f: X \rightarrow \mathscr{P}(X)$, define a set $U \subseteq X \times X$ (think of it as a table indexed by X) such that $\operatorname{AntiDiag}(U)$ is not in the image of f. Deduce Cantor's theorem that $X \nrightarrow \mathscr{P}(X)$.
6. Perform the following base conversions of numbers and replace the question marks with your answers. Include your calculations.
(a) $536_{7}=?{ }_{10}$.
(b) $1000000_{2}=?{ }_{8}$.
(c) $20_{10}=?{ }_{16}$.
7. Describe the algorithm/procedure of writing a rational $\left[\frac{a}{b}\right]$ in its decimal representation. Prove that the latter is well-defined.
